醫(yī)學會議中心

發(fā)布醫(yī)學會議通知

中科院—首屆北京高通量測序數(shù)據(jù)分析系統(tǒng)學習實操班

會議日期 2018-06-29至 2018-07-02
會議地點 北京海淀區(qū)
會議學科 基礎醫(yī)學分子生物
主辦單位 北京中科云暢應用技術(shù)研究院
學分情況

培訓目標及特點:

培訓立足于最新技術(shù)和工具,強調(diào)融會貫通,強調(diào)綜合應用。

采用“互動式教學,討論式授課,案例式學習” 的教學模式。

培訓邀請的主講老師均是有理論和實際研究經(jīng)驗的專家。

學員通過與專家直接交流,能夠分享到頂尖學術(shù)機構(gòu)的研究經(jīng)驗和實驗設計思路。

學員通過集中專題學習后能夠擴展思路,在研究技術(shù)方面領(lǐng)悟更多。

主要內(nèi)容:

1. DNA測序技術(shù)的進化

a) 第一代測序技術(shù):Sanger測序原理

b) 第二代測序技術(shù):Illumina,454, Ion Torrent原理

c) 第三代測序技術(shù):PacBio, Hellicos原理

d) 第四代測序技術(shù): Oxford NanoPore原理

e) 其他技術(shù)Hybridization based methods (NabSys)

2. High throughput Sequencing for various biological problems (應用高通量測序技術(shù)解決各種生物學問題)

2.1 RNA Transcription (RNA轉(zhuǎn)錄)

1. Chromatin Isolation by RNA Purification (ChIRP-Seq)

2.  Global Run-on Sequencing (GRO-Seq)

3. Ribosome Profiling Sequencing (Ribo-Seq)

4. RNA Immunoprecipitation Sequencing (RIP-Seq)

5. High-Throughput Sequencing of CLIP cDNA library (HITS-CLIP)

6. Crosslinking and Immunoprecipitation Sequencing (CLIP-Seq)

7. Photoactivatable Ribonucleoside–Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP)

8. Individual Nucleotide Resolution CLIP (iCLIP)

9. Native Elongating Transcript Sequencing (NET-Seq)

10. Targeted Purification of Polysomal mRNA (TRAP-Seq)

11. Crosslinking, Ligation, and Sequencing of Hybrids (CLASH-Seq)

12. Parallel Analysis of RNA Ends Sequencing (PARE-Seq)

13. Genome-Wide Mapping of Uncapped Transcripts (GMUCT)

14. Transcript Isoform Sequencing (TIF-Seq)

15. Paired-End Analysis of TSSs (PEAT)

2.2. RNA Structure (RNA結(jié)構(gòu)解析)

1. Selective 2‘-Hydroxyl Acylation Analyzed by Primer Extension Sequencing (SHAPE-Seq)

2. Parallel Analysis of RNA Structure (PARS-Seq)

3. Fragmentation Sequencing (FRAG-Seq)

4. CXXC Affinity Purification Sequencing (CAP-Seq)

5. Alkaline Phosphatase, Calf Intestine-Tobacco Acid Pyrophosphatase Sequencing (CIP-TAP)

6. Inosine Chemical Erasing Sequencing (ICE)

7. m6A-Specific Methylated RNA Immunoprecipitation Sequencing (MeRIP-Seq)

2.3.  Low-Level RNA Detection, Digital RNA Sequencing (微量RNA檢測,數(shù)字RNA測序)

1. Whole-Transcript Amplification for Single Cells (Quartz-Seq)

2. Designed Primer–Based RNA Sequencing (DP-Seq)

3. Switch Mechanism at the 5‘ End of RNA Templates (Smart-Seq)

4. Switch Mechanism at the 5‘ End of RNA Templates Version 2 (Smart-Seq2)

5. Unique Molecular Identifiers (UMI)

6. Cell Expression by Linear Amplification Sequencing (CEL-Seq)

7. Single-Cell Tagged Reverse Transcription Sequencing (STRT-Seq)

2.4.  Low-Level DNA Detection(微量DNA檢測)

1. Single-Molecule Molecular Inversion Probes (smMIP)

2. Multiple Displacement Amplification (MDA)

3. Multiple Annealing and Looping–Based Amplification Cycles (MALBAC)

4. Oligonucleotide-Selective Sequencing (OS-Seq)

5. Duplex Sequencing (Duplex-Seq)

2.5.  DNA Methylation(DNA甲基化)

1. Bisulfite Sequencing (BS-Seq)

2. Post-Bisulfite Adapter Tagging (PBAT)

3. Tagmentation-Based Whole Genome Bisulfite Sequencing (T-WGBS)

4. Oxidative Bisulfite Sequencing (oxBS-Seq)

5. Tet-Assisted Bisulfite Sequencing (TAB-Seq)

6. Methylated DNA Immunoprecipitation Sequencing (MeDIP-Seq)

7. Methylation-Capture (MethylCap)

8. Methyl-Binding-Domain–Capture (MBDCap)

9. Reduced-Representation Bisulfite Sequencing (RRBS-Seq)

2.6.  DNA-Protein Interactions(DNA和蛋白質(zhì)互作)

1. DNase l Hypersensitive Sites Sequencing (DNase-Seq)

2. MNase-Assisted Isolation of Nucleosomes Sequencing (MAINE-Seq)

3. Chromatin Immunoprecipitation Sequencing (ChIP-Seq)

4. Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE-Seq)

5. Assay for Transposase-Accessible Chromatin Sequencing (ATAC-Seq)

6. Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET)

7. Chromatin Conformation Capture (Hi-C/3C-Seq)

8. Circular Chromatin Conformation Capture (4-C or 4C-Seq)

9. Chromatin Conformation Capture Carbon Copy (5-C)

2.7.  Sequence Rearrangements(序列重排)

1. Retrotransposon Capture Sequencing (RC-Seq)

2. Transposon Sequencing (Tn-Seq)

3. Translocation-Capture Sequencing (TC-Seq)

3. Data analysis (part 1):data pre-processing(數(shù)據(jù)分析第一部分,數(shù)據(jù)前處理)

3.1 evaluation of data quality 數(shù)據(jù)質(zhì)量評估

Data format,fasta,fastq,quality value,gff3

3.2 Data cleanup數(shù)據(jù)清洗

Quality filter, trimmer, clipper

4. Data analysis (part 2):reference free analyses,(數(shù)據(jù)分析第二部分,無參轉(zhuǎn)錄組分析)

4.1 Trinity de novo transcriptome assembly

4.2 Analysis of Differential Expressed Gene (DEGs)

4.3 Abundance estimation using RSEM

4.4 Differential expression analysis using EdgeR

4.5 Explore the results (cummerbund)

4.6 MA plot, Volcano plot, False Discovery Rate (FDR)

4.7 hierarchical two-way clustering, pairwise sample-distance, gene expression profiles.

5 Data analysis (part 3):reference based analyses,(數(shù)據(jù)分析第三部分,有參轉(zhuǎn)錄組分析)

5.1 Mapping reads to the reference (tophat)

5.2 Assemble mapped reads (cufflinks)

5.3 Merge sample-specific assemblies (cuffmerge)

5.4 Analysis of Differentially Expressed Gene (DEGs)

5.5 Identify DEGs (cuffdiff)

5.6 Explore the results (cummerbund)

6 Data analysis (part 4):from gene list to gene function,(數(shù)據(jù)分析第四部分,基因功能注釋)

6.1 File format for annotation information: GFF3

6.2 Annotation

6.3 Homology search (BLAST+/SwissProt/Uniref90)

6.4 Protein domain identification (HMMER/PFAM)

6.5 Protein signal peptide and transmembrane domain prediction (singalP/tmHMM)

6.6 Comparing to currently curated annotation databases (EMBL Uniprot eggnog/GO)

6.7 Enrichment analysis using DAVID

6.8 Gene name batch viewer

6.9 Gene functional classification

6.10 Functional annotation chart

6.11 Functional annotation clustering

Lab(上機實驗)

Lab1: Connection to cloudlab using Putty

Lab2: File transfer between cloudlab and local computer using filezilla

Lab3: Linux commands

Lab4: Reads quality evaluation: fastqc

Lab5a: Reads quality control: fastx tool kit

Lab5b: Processing the mapping file: samtool

Lab6: Reference free analysis: Tuxedo package

Lab7: Reference based analysis: Trinity package

Lab8: Annotation: Trinnotate

Lab9: Enrichment analysis using DAVID

參會費用:

每人¥3900元(含報名費、培訓費、資料費、證書相關(guān)費用),食宿可統(tǒng)一安排,費用自理。

主講專家:

中國科學院基因組研究所

中國醫(yī)學科學院藥用植物研究所

聯(lián)系人:張愛國 老師

咨詢電話:136 8311 1214

需要詳細的紅頭通知文件,可電話咨詢張老師。

登錄/注冊 關(guān)閉

親愛的用戶,如果您是老用戶,請先登錄后才能進行此項操作;如果您是新用戶,點擊“注冊”按鈕,注冊登錄后,才可以進行此項操作!謝謝合作 !

注冊 關(guān)閉

請選擇用戶類別:醫(yī)務工作者會議組織者